
# JVC

# **SERVICE MANUAL**

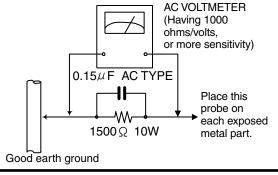
# **CD PORTABLE SYSTEM**

# **RS-WP1WT**



#### **Contents**

| Safety Precautions 1-2            | Flow of functional               |
|-----------------------------------|----------------------------------|
| Important for laser products 1-3  | operation unit Toc read 1-21     |
| Preventing static electricity 1-4 | Maintenance of laser pickup 1-22 |
| Disassembly method 1-5            | Replacement of laser picup 1-22  |
| Adjustment method 1-17            | Description of major ICs 1-23    |


#### Safety Precautions

- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (1) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
- 5. Leakage currnet check (Electrical shock hazard testing)
  After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.
  Do not use a line isolation transformer during this check.
  - Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.).
  - Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a 1,500  $\Omega$  10W resistor paralleled by a 0.15 $\mu$ F AC-type capacitor between an exposed metal part and a known good earth ground.

Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and meausre the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Voltage measured any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).



#### Warning

- 1. This equipment has been designed and manufactured to meet international safety standards.
- 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
- 3. Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

#### A CAUTION -

Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor ( $\longrightarrow$ ), diode ( $\longrightarrow$ ) and ICP ( $\bigcirc$ ) or identified by the  $^{"}\!\underline{\Lambda}"$  mark nearby are critical for safety.

When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer. (Except the J and C version)

## Important for Laser Products

#### 1.CLASS 1 LASER PRODUCT

- 2.DANGER: Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
- **3.CAUTION**: There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
- 4.CAUTION: The compact disc player uses invisible laserradiation and is equipped with safety switches whichprevent emission of radiation when the drawer is open and the safety interlocks have failed or are de feated. It is dangerous to defeat the safety switches.

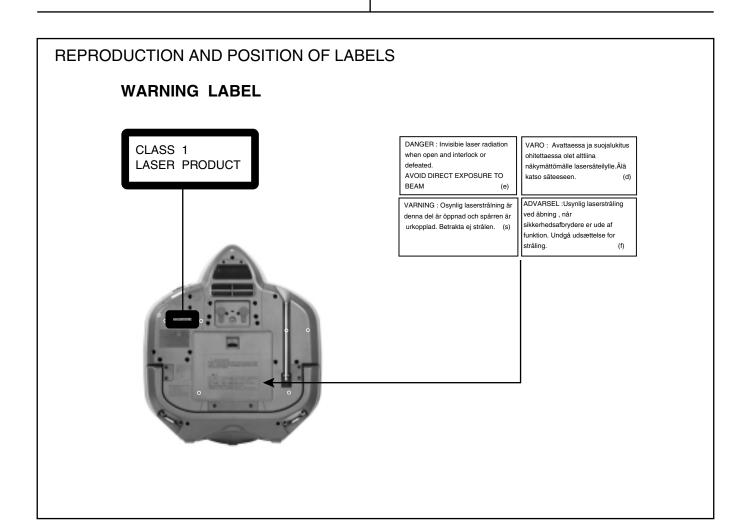
**5.CAUTION**: If safety switches malfunction, the laser is able to function.

6.CAUTION: Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

↑ CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.

VARNING: Osynlig laserstrålning är denna del är öppnad och spårren är urkopplad. Betrakta ej strålen.

**VARO** : Avattaessa ja suojalukitus ohitettaessa olet


säteeseen.

alttiina näkymättömälle lasersäteilylle.Älä katso

ADVARSEL: Usynlig laserstråling ved åbning, når sikkerhedsafbrydere er ude af funktion. Undgå udsættelse for stråling.

ADVARSEL: Usynlig laserstråling ved åpning,når sikkerhetsbryteren er avslott. unngå utsettelse

for stråling.

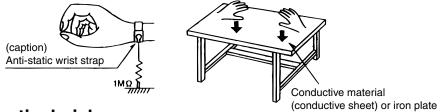


## **Preventing static electricity**

#### 1. Grounding to prevent damage by static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

#### 2. About the earth processing for the destruction prevention by static electricity Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as CD players.


Be careful to use proper grounding in the area where repairs are being performed.

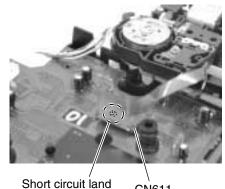
#### 2-1 Ground the workbench

Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

#### 2-2 Ground yourself

Use an anti-static wrist strap to release any static electricity built up in your body.



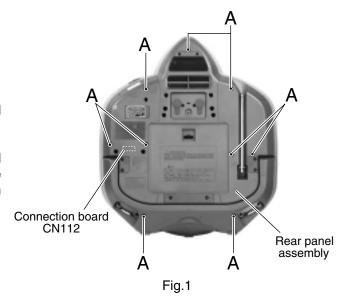

#### 3. Handling the optical pickup

- 1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
- 2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

#### 4. Handling the traverse unit (optical pickup)

- 1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
- 2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
- 3. Handle the flexible cable carefully as it may break when subjected to strong force.
- 4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it

CAUTION: Prior to disconnecting the flexible wire extending from the pickup, solder it to the short circuit land to prevent damage to the pickup.




CN611

## **Disassembly method**

#### ■Removing the front panel assembly / rear panel assembly (See Fig.1)

- 1. Remove the nine screws **A** attaching the rear panel assembly on the back of the body.
- 2. Pull out the front panel assembly and the rear panel assembly. Disconnect the speaker terminal on the front side and connector CN112 on the connection board on the rear side at the same time.



#### ■ Removing the CD mechanism assembly section (See Fig.2)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Disconnect the card wire from connector CN614 and the wire from CN624 on the CD mechanism assembly respectively.
- 2. Remove the three screws **B** attaching the CD mechanism assembly section.

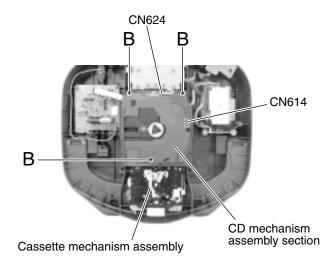



Fig.2

# ■ Removing the cassette mechanism assembly (See Fig.3)

- Prior to performing the following procedures, remove the rear panel assembly and the CD mechanism assembly section.
- 1. Disconnect the card wire from connector CN33, CN34 on the cassette mechanism assembly.
- 2. Remove the four screws **C** and the cassette mechanism assembly with the wire cover.

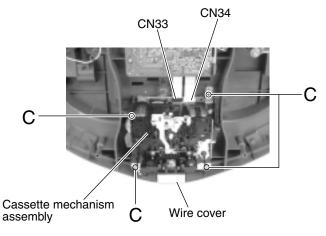
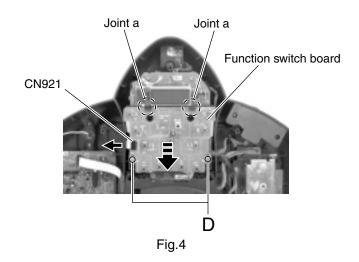




Fig.3

# ■ Removing the function switch board (See Fig.4)

- Prior to performing the following procedures, remove the rear panel assembly.
- Disconnect the card wire from connector CN921 on the function switch board.
- 2. Remove the two screws **D** and move the function switch board in the direction of the arrow to disengage the two joints **a**.



# ■ Removing the LCD spare board / LED board (See Fig.5 and 6)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Remove the LCD spare board while pulling each joint hook **b** outward.
- Pull out the LED board.If necessary, unsolder FW925 soldering the wire on the LED board.

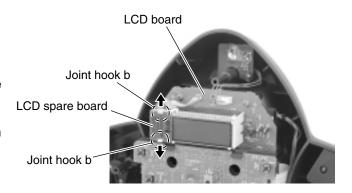



Fig.5

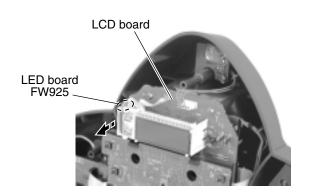
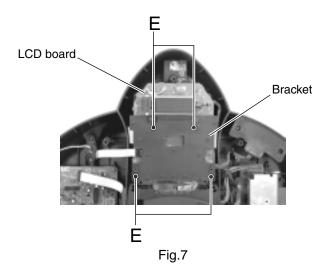
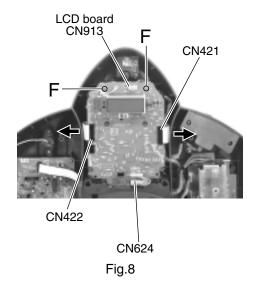
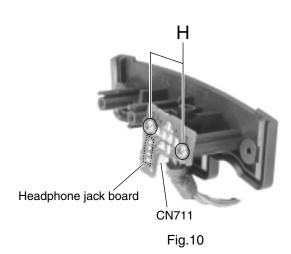



Fig.6


### ■ Removing the LCD board


(See Fig.7 and 8)


- Prior to performing the following procedures, remove the rear panel assembly and the function switch board.
- 1. Remove the four screws **E** attaching the bracket.
- 2. Disconnect the card wire from connector CN421, CN422 and the wire from CN913 on the LCD board respectively.
- 3. Disconnect the wire from connector CN624 on the CD mechanism assembly.
- 4. Remove the two screws **F** attaching the LCD board (The LCD spare board and the LED board are still attached to the LCD board).



- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Remove the two screws **G** attaching the headphone jack board bracket.
- 2. Pull out the headphone jack board bracket and the headphone cover at the same time.
- 3. Remove the two screws **H** attaching the headphone jack board.
- 4. Disconnect the wire from connector CN711 on the headphone jack board.







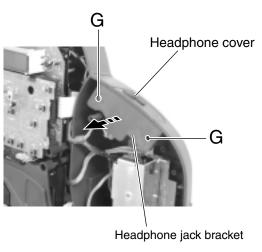



Fig.9

# ■ Removing the main board / sub (1) board / sub (2) board (See Fig.11 to 13)

- Prior to performing the following procedures, remove the rear panel assembly, the CD mechanism assembly section and the LCD board.
- Remove the two screws J attaching the main board on the back of the rear panel assembly.
- 2. Disconnect the card wire from connector CN43 and CN44 on the main board on the inside of the rear panel assembly.
- 3. Disconnect the wire from connector CN101 and CN103 on the power board.
- 4. Disconnect the wire from connector CN401 on the battery board.
- 5. Remove the six screws **K** attaching the main board. Disconnect the card wire from connector CN91 on the reverse side of the main board.
- 6. Remove the screw **L** and disconnect the sub (1) board from connector CN341 on the main board.
- 7. Disconnect the sub (2) board from connector CN371 on the main board.

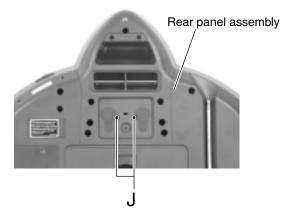
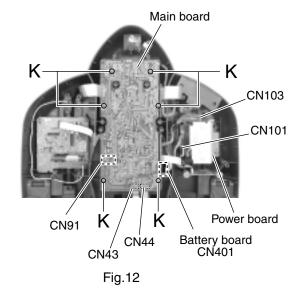




Fig.11



CN341 Sub (1) board

Main board CN371 Sub (2) board

Fig.13

#### ■Removing the remocon board

(See Fig.14)

- Prior to performing the following procedure, remove the rear panel assembly.
- 1. Remove the screw  ${\bf M}$  attaching the remocon board and disconnect the wire from connector CN913 on the LCD board.

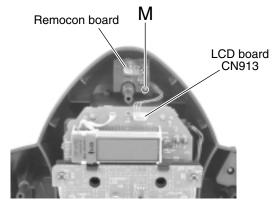
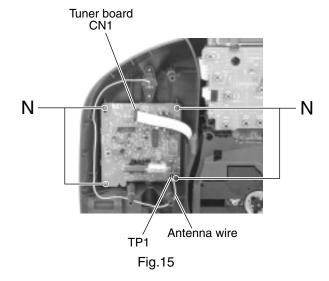




Fig.14

#### ■ Removing the tuner board (See Fig.15)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Disconnect the card wire from connector CN1 and the antenna wire from TP1 on the tuner board respectively.
- 2. Remove the four screws  ${\bf N}$  attaching the tuner board.



# ■ Removing the power board (See Fig.16 to 18)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Disconnect the wire from connector CN101, CN102 and CN103 on the power board.
- 2. Remove the four screws **O** attaching the power board.
- 3. Remove the three screws O' attaching the heat sink.
- 4. Disengage the two joints **c** and remove the heat sink from the power board.

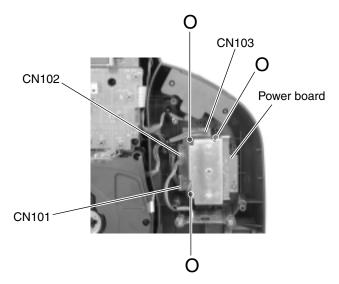



Fig.16

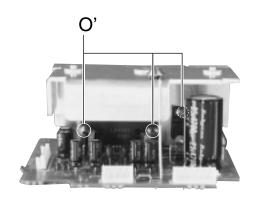



Fig.17

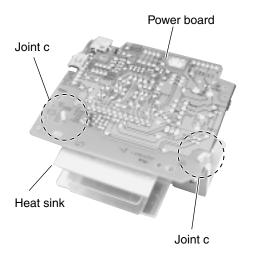
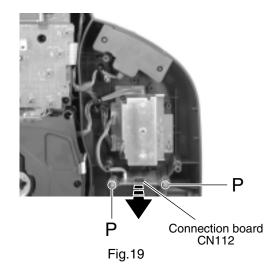
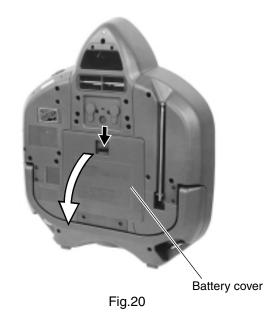




Fig.18


# ■Removing the connection board (See Fig.19)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Disconnect the wire from connector CN102 on the power board.
- 2. Remove the two screws **P** and pull out the connection board.



# ■Removing the battery board (1) / battery board (2) (See Fig.20 and 21)

- Prior to performing the following procedures, remove the rear panel assembly.
- 1. Remove the battery cover on the back of the rear panel assembly.
- 2. Remove the two screws **Q** retaining the battery board (1).
- 3. Pull out the battery board (1) and disconnect the wire from inner connector CN401.
- 4. Remove the two screws **R** and pull out the battery board (2).



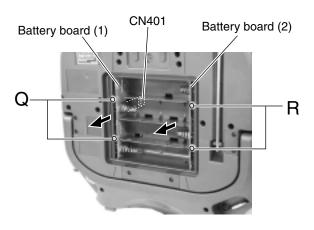



Fig.21

#### <CD mechanism assembly section>

 Prior to performing the following procedures, remove the rear panel assembly and the CD mechanism assembly section.

# ■ Removing the CD mechanism assembly (See Fig.22 to 26)

CAUTION: Prior to disconnecting the flexible wire extending from the pickup, solder it to the short circuit land to prevent damage to the pickup.

- 1. Release the three joint hooks **d** retaining the CD mechanism cover.
- Disconnect the wire from connector CN612 on the CD servo board.
- 3. Remove the CD mechanism assembly from the three dampers.
- Solder the flexible wire connected to connector CN611 on the CD servo board to the short circuit land under the flexible wire.

After soldering, disconnect the pickup wire from connector CN611.

CAUTION: When reassembling, connect the pickup wire extending from the pickup to connector CN611 on the CD servo board. Then unsolder the wire soldered to the short circuit land.

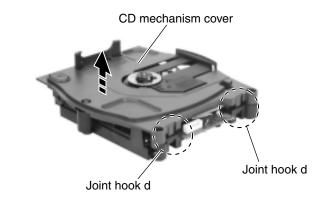



Fig.22

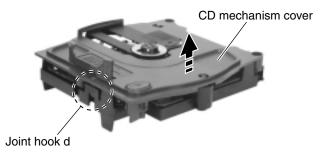
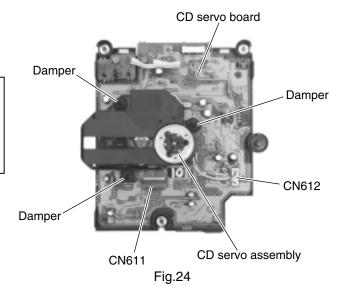




Fig.23



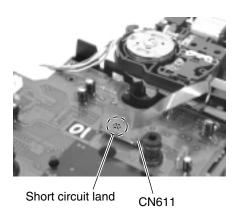



Fig.26

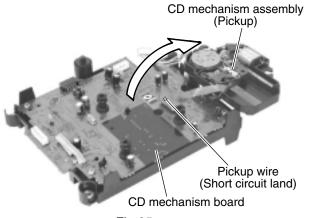



Fig.25

#### ■ Removing the CD servo board

(See Fig.27)

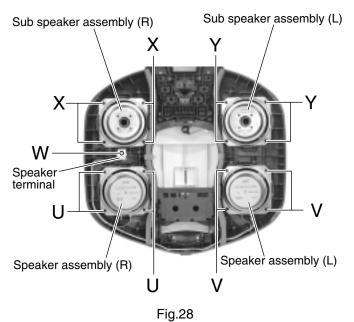
- Prior to performing the following procedure, remove the CD servo assembly.
- Remove the four screws S retaining the CD servo board.
- 2. Unsolder FW616 where the wire extending from the OPEN / CLOSE switch board is soldered.

#### ■Removing the OPEN / CLOSE switch board (See Fig.27)

- Prior to performing the following procedure, remove the CD mechanism cover.
- Remove the screw T retaining the OPEN / CLOSE switch board.
- 2. Unsolder FW626 where the wire extending from the CD mechanism board is soldered.

#### <Front assembly>

#### ■Removing the speaker assembly (R) and (L) (See Fig.28)


- Prior to performing the following procedure, remove the front assembly.
- Remove the four screws **U** attaching the speaker assembly (R).
- 2. Remove the four screws **V** attaching the speaker assembly (L).
- 3. Remove the screw **W** attaching the speaker terminal. If necessary, disconnect the wire from each speaker terminal.

#### ■ Removing the sub speaker assembly (R) and (L) (See Fig.28)

- Prior to performing the following procedure, remove the front assembly.
- Remove the four screws X attaching the sub speaker assembly (R).
- 2. Remove the four screws **Y** attaching the sub speaker assembly (L).
  - If necessary, disconnect the wire from each speaker terminal.



Fig.27



#### <Cassette mechanism section>

#### ■Removing the playback / recording & eraser head (See Fig. 1 to 3)

- 1. While shifting the trigger arms seen on the right side of the head mount in the arrow direction, turn the flywheel R in counterclockwise direction until the head mount has gone out with a click (See Fig. 1).
- 2. When the flywheel R is rotated in counterclockwise direction, the playback / recording & eraser head will be turned in counterclockwise direction from the position in Fig. 2 to that in Fig. 3.
- 3. At this position, disconnect the flexible P.C. board (outgoing from the playback / recording & eraser head) from the connector CN31 on the head amplifier & mechanism control P.C. board.
- 4. Remove the flexible P.C. board from the chassis base.
- 5. Remove the spring 1 from behind the playback / recording & eraser head.
- 6. Loosen the reversing azimuth screw retaining the playback / recording & eraser head.
- 7. Take out the playback / recording & eraser head from the front of the head mount.
- 8. The playback / recoring & eraser head should also be removed similarly according to steps 1 to 7 above.

#### ■ Reassembling the playback / recording & eraser head (See Fig.3)

- 1. Reassemble the playback head from the front of the head mount to the position as shown in Fig. 3.
- 2. Fix the reversing azimuth screw.
- 3. Set the spring 1 from behind the playback / recording & eraser head.
- 4. Attach the flexible P.C. board to the chassis base, as shown in Fig. 3.
- 5. The playback / recording & eraser head should also be reassembled similarly to step 1 to 4 above.

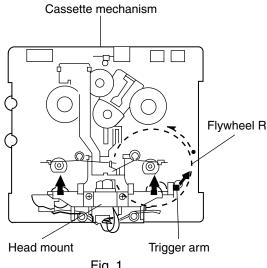



Fig. 1

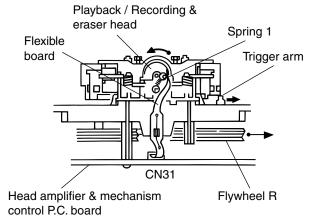



Fig. 2

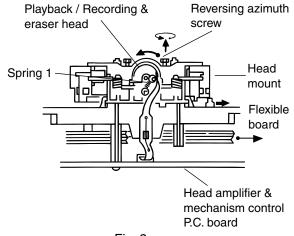
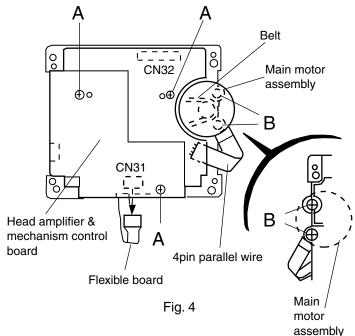
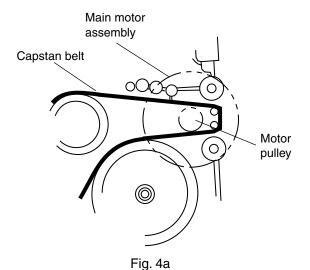
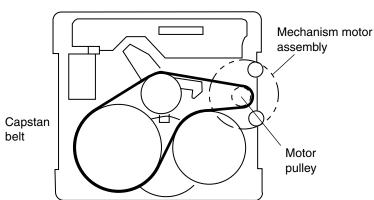




Fig. 3

#### ■ Removing the head amplifier & mechanism control board (See Fig. 4)


- 1. Remove the cassette mechanism assembly.
- 2. Disconnet the flexible wire from connctor CN31 to the flexible board.
- 3. After turning over the cassette mechanism assembly, remove the three screws **A** retaining the head amplifier & mechanism control board.
- 4. Disconnect the connector CN32 on the board including the connector CN 1 on the reel pulse P.C. board.
- 5. When necessary, remove the 4 pin parallel wire soldered to the main motor.




#### ■ Removing the main motor assembly

- 1. Remove the two screws **B** retaining the main motor assembly (See Fig. 4 and 4a).
- 2. While raising the main motor, remove the capstan belt from the motor pulley (See Fig. 4a).

CAUTION: Be sure to handle the capstan belt so carefully that this belt will not be stained by grease and other foreign matter. Moreover, this belt should be hanged while referring to the capstan belt hanging method in Fig. 5 and 6.







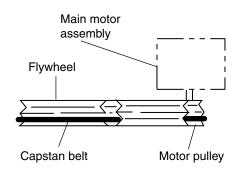
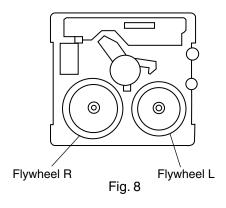
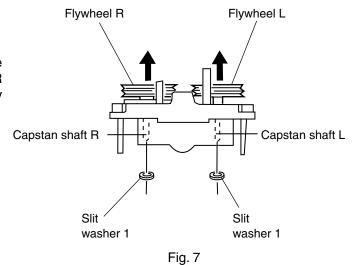





Fig. 6

#### ■ Removing the flywheel (See Fig. 7 and 8)

- 1. Remove the head amplifier & mechanism control P.C. board.
- 2. Remove the main motor assembly.
- After turning over the cassette mechanism, remove the two slit washers 1 and fixing the capstan shafts R and L, and pull out the flywheel R and L respectively from behind the cassette mechanism.





# ■Removing the mecha braket reel pulse P.C. board and solenoid (See Fig. 9 and 10)

- 1. Remove the screw C attaching the mecha braket assembly on the cassette assembly.
- 2. Remove the screw D attaching the reel pulse board.
- 3. Remove the five pawls **a** to **e** reattaining the reel pulse board.
- 4. From the surface of the reel pulse board parts, remove the two pawls **f** and **g** retaining the solenoid.

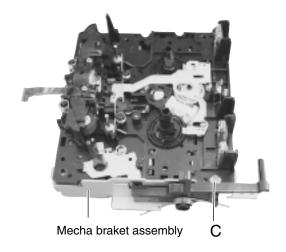
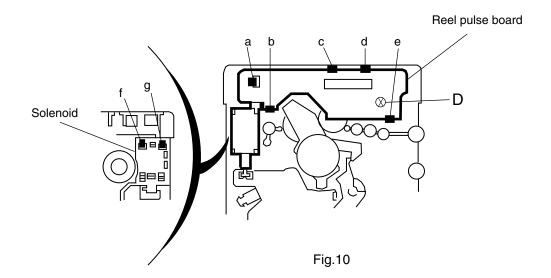




Fig. 9

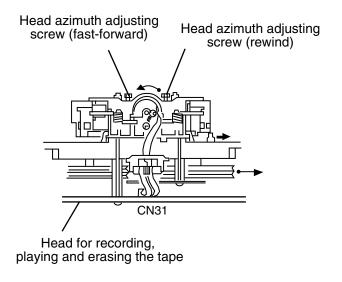


# **Adjustment method**

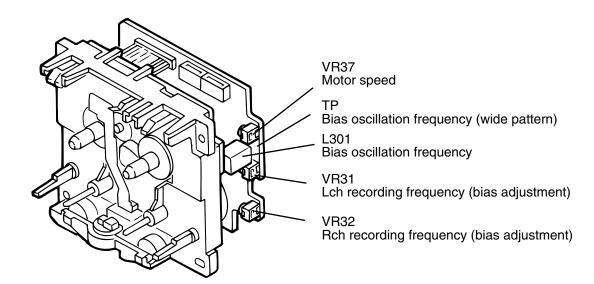
Degree of modulation in AM band ...... 30%

| •                                                                                                                                                                                                          |                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Measuring devices necessary for adjustment</li> <li>Low-frequency oscillator</li> <li>It must have the ability to output 600ohm from 0 dBs at an oscillation frequency of 20 Hz-50 Hz.</li> </ul> | ■ Tuner section  Voltage input to the tuner +B: DC 5.7 V  VT: DC 12 V  Standard measuring output 26.1 mV (0.28 V)/3ohm                                    |
| 2.Attenuator impedance: 600ohm                                                                                                                                                                             | Input locations AM: standard loop antenna FM: TP1 (hot) and TP2 (GND)                                                                                     |
| 3.Electronic voltmeter                                                                                                                                                                                     |                                                                                                                                                           |
| 4.Distortion meter                                                                                                                                                                                         | Sound OFF Effective hyper bass OFF                                                                                                                        |
| 5.Frequency counter                                                                                                                                                                                        | Volume adjustment                                                                                                                                         |
| 6.Wow and flutter meter                                                                                                                                                                                    |                                                                                                                                                           |
| 7.Test tapes VT-712: tape speed and rotational distortion (3 kHz)                                                                                                                                          | Precautions for measuring                                                                                                                                 |
| VT-724: standard level (1 kHz) VT-703: head angle adjustment (10 kHz), or use VT-73 VT-739: reproduction of frequency characteristics                                                                      | 1.Input 30 pF and 33 kohm to the IF sweeper output and 0.082 $\mu$ F and 100 kohm to the sweeper input, respectively.                                     |
| (1 kHz, 63 Hz, 10 kHz)  8.Blank tape                                                                                                                                                                       | 2.Lower the output level of the IF sweeper as much as possible in the adjustable range.                                                                   |
| Type I : AC-225 (TDK-AD)<br>Type II : AC-514 (TDK-SA)                                                                                                                                                      | 3.The IF sweeper needs no adjustment as it is a fixed component.                                                                                          |
| 9.Torque gauge: Tension gauge for playback,<br>fast-forward and rewind.<br>FWD (TW211A), REW (TW212A)<br>and FF/REW (TW2231A)                                                                              | 4.It is not necessary to perform any kind of adjustment<br>on the MPX, as a ceramic oscillator is used for<br>measuring.                                  |
| ■ Specifications for measurement                                                                                                                                                                           | 5.FM tracking adjustment is not necessary as a fixed coil is used.                                                                                        |
| Power supply voltage AC 230 V (50 Hz) Standard output Speaker: 0.775V/4ohm Headphone:0.245V/32ohm                                                                                                          | 6.The grounding circuit is separate from the input and output. Therefore, be sure to connect to ground carefully when measuring both the input and output |
| Standard frequency and input level                                                                                                                                                                         | voltages simultaneously using 2 channels of the electronic voltmeter.                                                                                     |
| AUX: -28 dBs                                                                                                                                                                                               | 7.The speaker's minus terminal cannot be connected to                                                                                                     |
| Measuring output terminal                                                                                                                                                                                  | ground when using a BTL format amplifier. Therefore, do not connect any type of ground wire to this terminal. The OTL format is used with this system.    |
| ■ Radio input signal  AM frequency                                                                                                                                                                         | 8.Use a large wire to connect to the dummy impedance generator when measuring the output.                                                                 |

9.Be sure to use a band pass filter (DV-12) when using


mixed tape.

#### Location of parts to be adjusted


#### **■**Cassette handling mechanism

# Head for recording, playing and erasing the tape Head azimuth adjusting screw (rewind) adjusting screw (fast-forward)

#### **■ Cassette handling mechanism** (reverse side)



#### ■ Location of parts to be adjusted

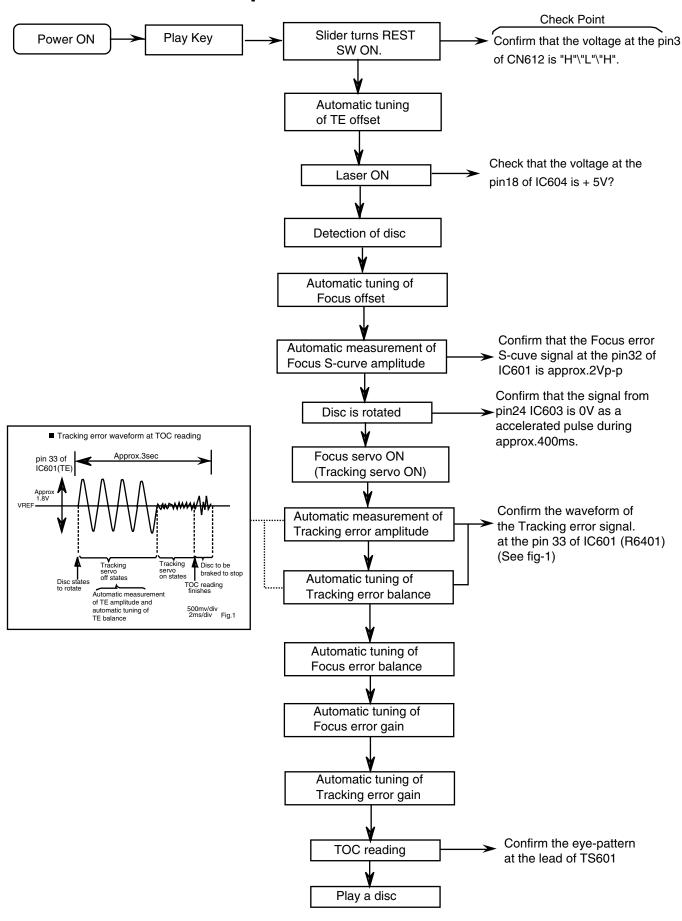


## ■ Adjustment of cassette handling mechanism

| Items                      | Condition                                                                                                                       | Method for adjustment and confirmation                                                                                                                                                                                                                                                                                                      | Standard value                                       | Parts to be adjusted                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| Confirmation of head angle | Test tape: VT-703 (10 kHz) Measuring output terminal: Speaker terminal, speaker (R) (Load resistance: 40hm), headphone terminal | <ol> <li>(1) Play back the VT-703 test tape.</li> <li>(2) Adjust the head azimuth screws so that the tape playback mechanism records the maximum output level in both the fast-forward and rewind direction.</li> <li>(3) In all cases, both the fast-forward and rewind direction should be adjusted using head azimuth screws.</li> </ol> | Maximum<br>output                                    | Adjust the head azimuth screws when changing the head. |
| Confirmation of tape speed | Test tape: VT-712 (3 kHz)<br>Measuring output terminal:<br>Headphone terminal                                                   | Adjust VR37 so that the frequency counter records 3,015 Hz ±15 Hz when playing back the end of the VT-712 test tape (3 kHz) in the fast-forward direction.                                                                                                                                                                                  | Tape speed<br>of cassette<br>deck: 3,015<br>Hz±15 Hz | VR37                                                   |

#### ■ Items to be confirmed and standard values

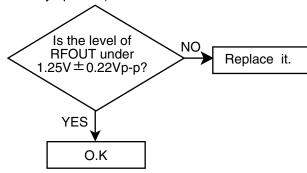
| Items                                                            | Condition                                                                                                                    | Method for adjustment and confirmation                                                                                                                                                | Standard<br>value            | Parts to be adjusted                         |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|
| Difference in<br>speed<br>between fast-<br>forward and<br>rewind | Test tape: VT-712 (3 kHz) Measuring output terminal: Speaker terminal, speaker (R) (Load resistance: 4 ), headphone terminal | The difference between fast-forward and rewind should be less than 60 Hz on the frequency counter when playing back the beginning of the VT-712 test tape (3 kHz) in both directions. | Less than 60<br>Hz           | Should be confirmed when changing the motor. |
| Wow and flutter                                                  | Test tape: VT-712 (3 kHz) Measuring output terminal: Headphone terminal                                                      | Wow and flutter should be recorded at less than 0.25% (WRMS) when playing back the VT-712 test tape (3 kHz) in the fast-forward direction.                                            | Less than<br>0.25%<br>(WRMS) |                                              |

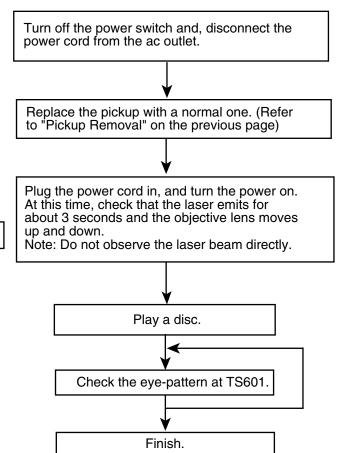

## **■** Electronic performance

| Items                                                                     | Condition                                                                                             | Method for adjustment and confirmation                                                                                                                                                                                                                        | Standard<br>value                                                                    | Parts to be adjusted |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|
| Confirmation of output                                                    | Measuring output terminal:<br>CN34-5 or 7-terminal<br>preamp base<br>Test tape: VT-724                | Confirm that the output from the CN34-5 or 7-terminal preamp base connector is - 25 dBs ± 3 dB when playing back the VT-724 test tape.  Reference value: The output from the headphone terminal is -7 dB ± 4 dB.                                              | Output of CN34-5 terminal: -25 dBs ±3 dB Difference between Lch and Rch: within 3 dB |                      |
| Confirmation<br>of<br>reproduction<br>of frequency<br>characteristic<br>s | Measuring output terminal:<br>Headphone terminal<br>Test tape: VT-739                                 | Confirm that the 10 kHz reproduction level is -1 dB±5 dB compared to the 1 kHz reproduction level when playing back the VT-739 test tape.                                                                                                                     | Difference<br>between 10<br>kHz and 1 kHz<br>should be -1<br>dB±5 dB.                |                      |
| Recording<br>bias<br>frequency                                            | Fast-forward or rewind direction: Test tape: TYPE II (AC-514) Measuring terminal: Bias TP on the base | Switch the bias (beat cut switch) between 1 and 2 to confirm that the frequency changes. Load the test tape (AC-514 for TYPE II) into the mechanism and preset it to the record-pause mode. Confirm that the bias TP frequency on the base is 100 kHz ± 6kHz. | 100 kHz±6 kHz                                                                        |                      |

# ■ Standard values for confirmation of electronic performance

| Items                                                         | Condition                                                                                                                                 | Method for adjustment and confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard value                                                        | Parts to be adjusted   |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|
| Erasing<br>current<br>(standard<br>and<br>reference<br>value) | Fast-forward and rewind direction: • Recording mode • AC-514 for TYPE II, AC-225 for TYPE I Measuring terminal: Both erase head terminals | Load the test tape (AC-514 for TYPE II, AC-225 for TYPE I) into the tape playback mechanism and preset it to the record-pause mode.  After setting it to the recording mode, send 1 M in series to the erase head and measure the erasing current from both erase head terminals.                                                                                                                                                                                                                 | TYPE II: 110<br>mA<br>TYPE I: 75 mA                                   |                        |
| Adjustment of reproduction of frequency characteristic s      | Standard frequencies: 1 kHz and 10 kHz (REF: -20 dB) Test tape: TYPE II: AC-514 Measuring input terminal: OSC IN                          | Load the test tape (AC-514 for TYPE II, AC-225 for TYPE I) into the tape playback mechanism and preset it to the record-pause mode. Input the standard value of -20 dB and the standard frequencies of 1 kHz and 10 kHz repeatedly to the microphone input from the transmitter in the recording mode. Adjust VR31 for Lch and VR32 for Rch so that the difference in level between 10kHz and 1 kHz is -1dB±5dB. Repeat the above for TYPE I and confirm that the difference in level is -XdB±dB. | Difference in<br>output<br>between 1 kHz<br>and 10 kHz: -1<br>dB±5 dB | Lch: VR31<br>Rch: VR32 |


# Flow of functional operation until TOC read




## Maintenance of laser pickup

# Replacement of laser pickup

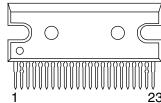
- Cleaning the pick up lens
   Before you replace the pick up, please try to clean the lens with a alcohol soaked cotton swab.
- (2) Life of the laser diode When the life of the laser diode has expired, the following symptoms will appear.
  - 1. The level of RF output (EFM output : amplitude of eye pattern) will below.





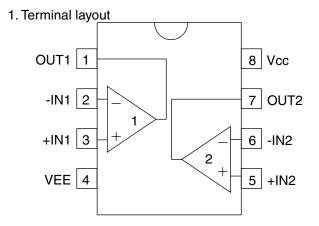
(3) Semi-fixed resistor on the APC PC board

The semi-fixed resistor on the APC printed circuit board which is attached to the pickup is used to adjust the laser power. Since this adjustment should be performed to match the characteristics of the whole optical block, do not touch the semi-fixed resistor.

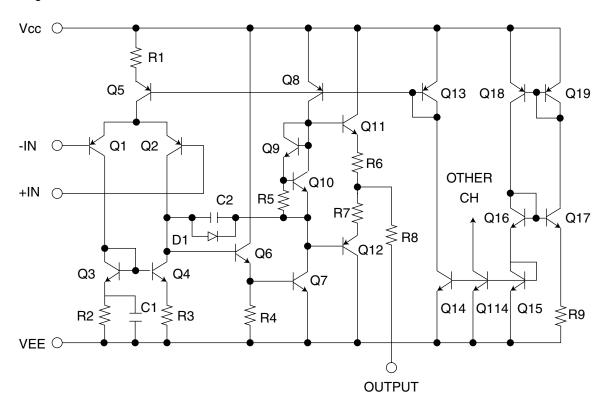

If the laser power is lower than the specified value, the laser diode is almost worn out, and the laser pickup should be replaced.

If the semi-fixed resistor is adjusted while the pickup is functioning normally, the laser pickup may be damaged due to excessive current.

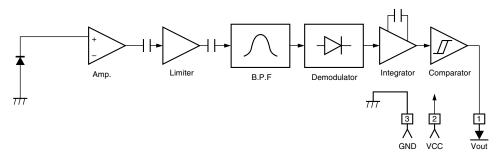
# **Description of major ICs**


#### ■ LA4905 (IC101) : Power amp IC

1. Terminal layout

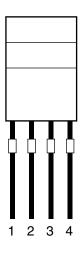


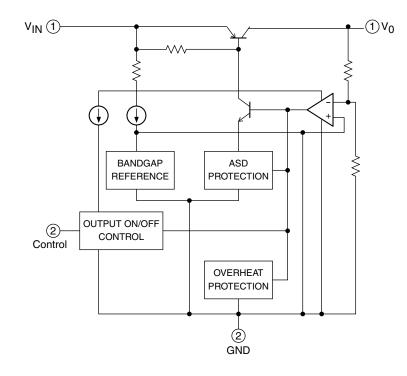

2. Block diagram Vcc(SW) Vcc 10 STBY(21 Switching regulator block Standby SW 9 SW Ripple H.L.S. D.C (20) SW B filter drive ABCD (14) SWE # H.L.S.: SW OUT1 Higher Level signal (13) SW OUT2 selector Amplifier output stage (16) SW GND PRE GND (2 Nonlinear/output stage Input amplifier +OUT 1 IN 1 (3 PWR GND 1 5 CH 1 В **BEEP** -OUT 1 amplifier Power supply/ground shorting protection circuit BEEP (4 Overvoltage/thermal protection circuit ↑ C (18) -OUT 2 Input amplifier PWR GND 2 CH 2 D IN 2 ( 17 +OUT 2 Nonlinear amplifier/output stage ON MUTE Pop noise ON TIME (23 (22)N.C. muting circuit prevention circuit


#### ■BA15218F-XE (IC201, IC701) : Dual operation amplifier



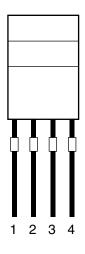
#### 2. Block diagram

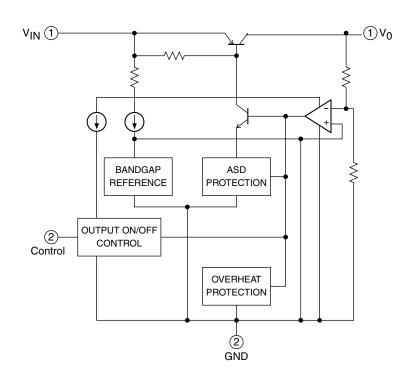




#### ■ GP1U281X (IC801, IC802): Receiver for remote controller



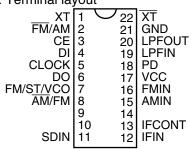
#### **■** KIA78R06PI(IC381) US 6V


- 1. Terminal layout
- 2. Block diagram

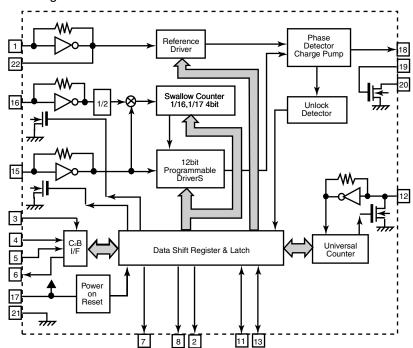





## ■ KIA78R08PI(IC301) SW 8V REGULATOR


- 1. Terminal layout
- 2. Block diagram





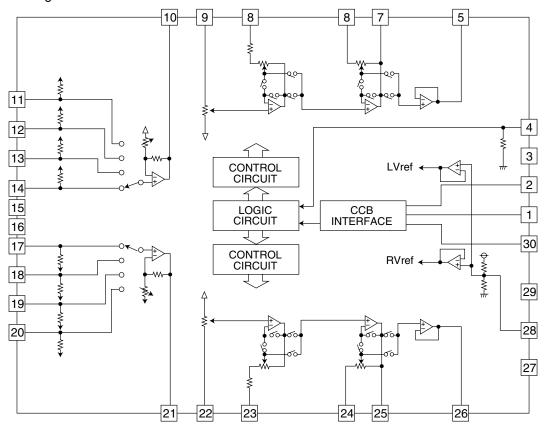

#### ■ LC72136N (IC2) : PLL frequency synthesizer

#### 1. Terminal layout



#### 2. Block diagram




| Pin |           |     |                                            | Pin |        |     |                                            |
|-----|-----------|-----|--------------------------------------------|-----|--------|-----|--------------------------------------------|
| No. | Symbol    | I/O | Function                                   | No. | Symbol | I/O | Function                                   |
| 1   | XT        | ı   | X'tal oscillator connect (75kHz)           | 12  | IFIN   | I   | IF counter signal input                    |
| 2   | FM/AM     | 0   | LOW:FM mode                                | 13  | IFCONT | 0   | IF signal output                           |
| 3   | CE        | 1   | When data output/input for 4pin(input) and | 14  |        | -   | Not use                                    |
|     |           |     | 6pin(output): H                            |     |        |     |                                            |
| 4   | DI        | ı   | Input for receive the serial data from     | 15  | AMIN   | ı   | AM Local OSC signal output                 |
|     |           |     | controller                                 |     |        |     |                                            |
| 5   | CLOCK     | ı   | Sync signal input use                      | 16  | FMIN   | ı   | FM Local OSC signal input                  |
| 6   | DO        | 0   | Data output for Controller                 | 17  | vcc    | -   | Power suplly(VDD=4.5-5.5V)                 |
|     |           |     | Output port                                |     |        |     | When power ON:Reset circuit move           |
| 7   | FM/ST/VCO | 0   | "Low": MW mode                             | 18  | PD     | 0   | PLL charge pump output(H: Local OSC        |
|     |           |     |                                            |     |        |     | frequency Height than Reference frequency. |
|     |           |     |                                            |     |        |     | L: Low Agreement: Height impedance)        |
| 8   | ĀM/FM     | 0   | Open state after the power on reset        | 19  | LPFIN  | ı   | Input for active lowpassfilter of PLL      |
| 9   | LW        | I/O | Input/output port                          | 20  | LPFOUT | 0   | Output for active lowpassfilter of PLL     |
| 10  | MW        | I/O | Input/output port                          | 21  | GND    | -   | Connected to GND                           |
| 11  | SDIN      | I/O | Data input/output                          | 22  | XT     | I   | X'tal oscillator(75KHz)                    |

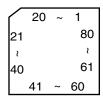
#### ■LC75342 (IC501) : E. volume

#### 1. Terminal layout



#### 2. Block diagram

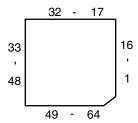



| Pin<br>No. | Symbol | Function                                   | Pin<br>No. | Symbol | Function                                        |
|------------|--------|--------------------------------------------|------------|--------|-------------------------------------------------|
| 1          | DI     | Serial data and clock input for IC control | 17         | R1     | Input signal connections                        |
| 2          | CE     | Chip enable                                | 18         | R2     | Input signal connections                        |
| 3          | VSS    | GND                                        | 19         | R3     | Input signal connections                        |
| 4          | TEST   | Electric volume connection for test        | 20         | R4     | Input signal connections                        |
| 5          | LOUT   | Volume control and equalizer input         | 21         | RSEL0  | Input selector output                           |
| 6          | LBASS2 | Connection for resistor and capacitor that | 22         | RIN    | Volume control and equalizer input              |
| 7          | LBASS1 | from the bass band filter                  | 23         | RTRE   | Connection for capacitor that from the treble   |
| 8          | LTRE   | Connection for capacitor that from the     |            |        | band filter                                     |
|            |        | treble band filter                         | 24         | RBASS1 | Connection for resistor and capacitor that from |
| 9          | LIN    | Volume control and equalizer input         | 25         | RBASS2 | the bass band filter                            |
| 10         | LSEL0  | Input selector output                      | 26         | ROUT   | Volume control and equalizer input              |
| 11         | L4     | Input signal connections                   | 27         | NC     | Not used                                        |
| 12         | L3     | Input signal connections                   | 28         | Vref   | Connection to the 0.5X VDD voltage generator    |
| 13         | L2     | Input signal connections                   |            |        | circuit used as the analog signal ground        |
| 14         | L1     | Input signal connections                   | 29         | VDD    | Power supply                                    |
| 15         | NC     | Not used                                   | 30         | CL     | Serial data and clock input for IC control      |
| 16         | NC     | Not used                                   |            |        |                                                 |

# ■ MN101C38CHX (IC901) : System controller

| Pin No.     | Symbol        | I/O                                          | Function                                                                           |
|-------------|---------------|----------------------------------------------|------------------------------------------------------------------------------------|
| 1~4         | COM 3~0       | 0                                            | FL grid control signal output                                                      |
| 5~7         | VLC 3~1       | i                                            | - 1 2 gird control orginal output                                                  |
| 8           | VDD           | -                                            | Power supply +5V                                                                   |
| 9,10        | OSC2,1        | I/O                                          | Oscillation terminal (8MHz)                                                        |
| 11          | VSS           | -                                            | Connect to GND                                                                     |
| 12,13       | XI,XO         | I/O                                          | Sub clock (32.768kHz)                                                              |
|             | MMOD          | 1/0                                          | Connect to GND                                                                     |
| 14<br>15    | VREF-         | -                                            | Reference voltage (-)                                                              |
|             |               |                                              |                                                                                    |
| 16          | VER           | <u>                                     </u> | Version select                                                                     |
| 17          | REGSAFETY     | !                                            | Regulator safety detect                                                            |
| 18          | CD5 SAFETY    |                                              | Regulator safety detect CD5                                                        |
| 19          | CD3 SAFETY    |                                              | Regulator safety detect CD3                                                        |
| 20          | TAPE0         | l                                            | Tape input                                                                         |
| 21          | KEY1          | I                                            | Key input 1                                                                        |
| 22          | GND           | -                                            | Non connect                                                                        |
| 23          | MPX           | I                                            | Stereo detect                                                                      |
| 24          | VREF+         | 1                                            | Power supply +5V                                                                   |
| 25          | SO            | I                                            | Serial data output                                                                 |
| 26          | SI            | I                                            | Serial data input                                                                  |
| 27          | SCK           | I                                            | Serial bus clock                                                                   |
| 28          | SCMD          | ı                                            | Senal data bus                                                                     |
| 29          | SSTAT         | i                                            | Status bus                                                                         |
| 30          | SCLK          | i                                            | Shift clock input                                                                  |
| 31          | PERIDO        | Ö                                            | Chip enable signal output                                                          |
| 32          | RST           | i i                                          | Reset input                                                                        |
| 33          | BEAT          | <u> </u>                                     | Beat cut sw                                                                        |
|             | SRST          |                                              | Reset signal for CD                                                                |
| 34          |               |                                              |                                                                                    |
| 35          | VCE           | !                                            | Chip enable for VOL. IC                                                            |
| 36          | VDATA         |                                              | Volume data for VOL. IC                                                            |
| 37          | VCLK          | 0                                            | Volume clock for VOL. IC                                                           |
| 38          | REM           |                                              | Remocon signal input                                                               |
| 39          | BUP           | l                                            | Buck-up detect                                                                     |
| 40          | PIN           | 0                                            | Power key input                                                                    |
| 41          | DC/BATT       | I                                            | DC/Battery select input                                                            |
| 42          | HP JACK       | I                                            | HP jack select input                                                               |
| 43          | SMUTE         | 0                                            | System mute output                                                                 |
| 44          | BCTL          | 0                                            | Back-up power supply control output                                                |
| 45          | POUT          | 0                                            | Power on control output                                                            |
| 46          | LLED          | -                                            | Non connect                                                                        |
| 47          | STBLED        | 0                                            | Stand by LED control output                                                        |
| 48          | LCLED         | 0                                            | Back light LED control output                                                      |
| 49          | PLAY          | 1                                            | Cassetle play sw dotection input                                                   |
| 50          | REEL          | i                                            | Cassetle reel palus detection input                                                |
| 51          | LATCH         | Ö                                            | Serial data latch output                                                           |
| 52          | DOOR          | i                                            | Door open / close detection input                                                  |
| 53          | READY         | i                                            | Serial data ready input                                                            |
| 54          | MIC JACK      |                                              | Mic jack in out detection                                                          |
| 55          | A HB 1        | 0                                            | Artive Hyper Bass select output signal 1                                           |
| 55<br>56    | A HB 2        |                                              | Artive Hyper Bass select output signal 1  Artive Hyper Bass select output signal 2 |
|             | PSWOFF        | 0                                            | 71 1 3                                                                             |
| 57          | POWUFF        | <u>                                     </u> | Power sw off detection                                                             |
| 58~60       | F 65          | -                                            | Non connect                                                                        |
| 61          | F. CD         | 0                                            | Function for CD                                                                    |
| 62          | F. TU         | 0                                            | Function for tuner                                                                 |
|             | F. AUX        | -                                            | Non connect                                                                        |
| 63          |               |                                              | I Diambaal,                                                                        |
| 64          | PBMUTE        | 0                                            | Playback mute                                                                      |
| 64<br>65~74 | PBMUTE<br>GND | -                                            | Connect to GND                                                                     |
| 64          |               |                                              |                                                                                    |

## ■ MN35530 (IC601) : Digital servo & processor

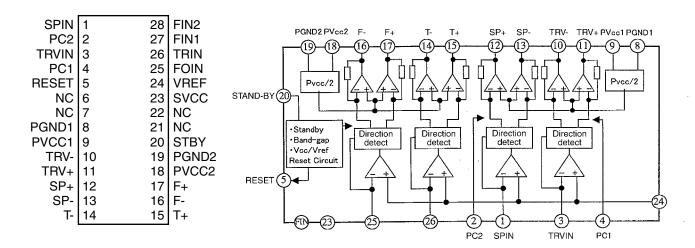

#### 1. Terminal layout



| Pin<br>No. | Symbol | I/O | Function                                   | Pin<br>No. | Symbol | I/O | Function                                      |
|------------|--------|-----|--------------------------------------------|------------|--------|-----|-----------------------------------------------|
| 1          | DVD3V  | -   | Power supply                               | 41         | ADPVCC | ı   | Vcc for A/D input                             |
| 2          | D0     | Ι   | Data input                                 | 42         | DSLF   | I/O | Loop filter pin for DSL                       |
| 3          | D1     | Ι   | Data input                                 | 43         | DRF    | I   | Bias pin for DSL input                        |
| 4          | NWE    | I/O | Write enable                               | 44         | PLLF   | I/O |                                               |
| 5          | NRAS   | I/O | Low address strove                         | 45         | VCOF   | ı   | Vcc OFF input                                 |
| 6          | D2     | Ι   | Data input                                 | 46         | AVDD2  | -   | Power supply                                  |
| 7          | D3     | Ι   | Data input                                 | 47         | AVSS2  | -   | Connect to GND                                |
| 8          | NCAS0  | I/O | Column address strove 0                    | 48         | OUTL   | 0   | Lch audio output                              |
| 9          | NCAS1  | I/O | Column address strove 1                    | 49         | AVSS2  | -   | Connect to GND                                |
| 10         | A8     | 0   | Adress output                              | 50         | OUTR   | 0   | Rch audio output                              |
| 11         | A7     | 0   | Adress output                              | 51         | AVDD1  | -   | Power supply                                  |
| 12         | A6     | 0   | Adress output                              | 52         | FSEL   | I   | FS selection input                            |
| 13         | A5     | 0   | Adress output                              | 53         | TMOD1  | -   | Connect to GND                                |
| 14         | A4     | 0   | Adress output                              | 54         | TMOD2  | -   | Connect to GND                                |
| 15         | A9     | 0   | Adress output                              | 55         | FLAG   | 0   | Flag output signal                            |
| 16         | A0     | 0   | Adress output                              | 56         | CVS    | -   | Non connect                                   |
| 17         | A1     | 0   | Adress output                              | 57         | EXTO   | -   | NC                                            |
| 18         | A2     | 0   | Adress output                              | 58         | EXT1   | -   | NC                                            |
| 19         | A3     | 0   | Adress output                              | 59         | EXT2   | -   | NC                                            |
| 20         | DVSS2  | -   | Connect to GND                             | 60         | TX     | 0   | Digtal audio interface output                 |
| 21         | DVDD2  | -   | Power supply                               | 61         | MCLK   | ı   | Micon command clock signal input              |
| 22         | SPOUT  | 0   | Spindle control output                     | 62         | MDATA  | ı   | Micon command data input                      |
| 23         | TRVF   | 0   | Traverse control output (F)                | 63         | MLD    | 1   | Micon command load signal input               |
| 24         | TRVR   | 0   | Traverse control output (R)                | 64         | BLKCK  | 0   | Sub-code block clock signal output            |
| 25         | TRF    | 0   | Tracking control output (F)                | 65         | SQCK   | 0   | Outside clock for sub-code Q resistor input   |
| 26         | TRR    | 0   | Tracking control output (R)                | 66         | SUBQ   | 0   | Sub-code Q-code output                        |
| 27         | FOF    | 0   | Focus control output (F)                   | 67         | DMUTE  | 0   | Digtal mute                                   |
| 28         | FOR    | 0   | Focus control output (R)                   | 68         | STAT   | ı   | Stetus signal input                           |
| 29         | FBAL   | 0   | Focus balance adjust output                | 69         | NRST   | ı   | Reset input                                   |
| 30         | TBAL   | 0   | Trarcking balance adjust output            | 70         | PC     | 1   | Power control input                           |
| 31         | CSEL   | Ι   | Chip select input                          | 71         | PMCK   | -   | Non connect                                   |
| 32         | FE     | Ι   | Focus error signal input (Analog input)    | 72         | SMCK   | 1   | Serial Master clock input                     |
| 33         | TE     | ı   | Tracking error signal input (Analog input) | 73         | SUBC   | -   | Non connect                                   |
| 34         | RF ENV | 1   | RF envelope signal input (Analog input)    | 74         | SUCK   | 1   | Clock input for sub code/serial output        |
| 35         | OFT    | Ι   | Off track signal input (H:off track)       | 75         | NCLDCK | -   | NC                                            |
| 36         | NRFDET | 1   | RF signal input                            | 76         | NTEST  | -   | NC                                            |
| 37         | BDD    | Ι   | BDO input pin (L:detect)                   | 77         | X1     | I   | Input of 33.8688MHz x'tal oscillation circuit |
| 38         | LDON   | Ι   | Laser ON signal output (H:on)              | 78         | X2     | 0   | Out of x'tal oscillation circuit              |
| 39         | ARF    | 1   | RF signal input                            | 79         | DVDD1  | -   | Power supply                                  |
| 40         | IREF   | Ι   | Reference current input                    | 80         | DVSS1  | -   | Connect to GND                                |

## ■ MN101C30AHY (IC602) : CD micon

#### 1. Terminal layout



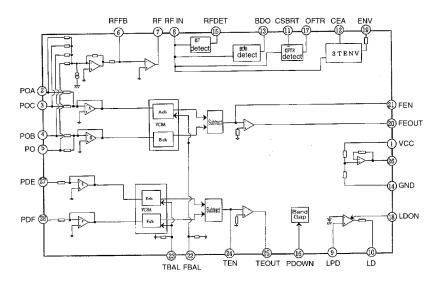

| Pin<br>No. | Symbol | I/O | Function                                   | Pin<br>No. | Symbol | I/O | Function                           |
|------------|--------|-----|--------------------------------------------|------------|--------|-----|------------------------------------|
| 1          | PA3    | -   | Connect to GND                             | 33         | DOOR   | ı   | Door open/close sw detection input |
| 2          | PA4    | -   | Connect to GND                             | 34         | O MUTE | 0   | Muting output                      |
| 3          | PA5    | -   | Connect to GND                             | 35         | DMUTE  | 0   | Digtal mute output                 |
| 4          | PA6    | -   | Connect to GND                             | 36         | PDOWN  | _   | Power off detect input             |
| 5          | PA7    | -   | Connect to GND                             | 37         | AMUTE  | 1   | Connect to GND                     |
| 6          | VREF+  | -   | Reference Voltage                          | 38         | P61    | ı   | Connect to GND                     |
| 7          | VDD    | -   | Power supply                               | 39         | P62    | -   | Connect to GND                     |
| 8          | OSC2   | 0   | X'tal OSC output terminal                  | 40         | P63    | •   | Connect to GND                     |
| 9          | OSC1   | 1   | X'tal OSC input terminal                   | 41         | P64    | ı   | Connect to GND                     |
| 10         | VSS    | -   | Connect to GND                             | 42         | P65    | -   | Connect to GND                     |
| 11         | X1     | 1   | Connect to GND                             | 43         | P66    | 1   | Connect to GND                     |
| 12         | X0     | 0   | Non connect                                | 44         | P67    | ı   | Connect to GND                     |
| 13         | MMOD   | 1   | Connect to GND                             | 45         | P70    | 1   | Connect to GND                     |
| 14         | SBOO   | -   | NC                                         | 46         | P71    | 1   | Connect to GND                     |
| 15         | SUBQ   | 1   | Sub-code Q-code output                     | 47         | P72    | ı   | Connect to GND                     |
| 16         | SQCK   | 0   | Outside clock for sub-code Q resitor input | 48         | P73    | •   | Connect to GND                     |
| 17         | SSTAT  | 0   | Statas signal output                       | 49         | P74    | 1   | Connect to GND                     |
| 18         | SCMD   | I/O | Sireal data                                | 50         | P75    | ı   | Connect to GND                     |
| 19         | SCLK   | 1   | Shift clock input                          | 51         | P76    | •   | Connect to GND                     |
| 20         | SREADY | 0   | Start signal output                        | 52         | P77    | 1   | Connect to GND                     |
| 21         | RST    | I   | Reset signal input                         | 53         | P87    | -   | Connect to GND                     |
| 22         | M-DATA | 1   | Micon command data signal input            | 54         | P86    | 1   | Connect to GND                     |
| 23         | MLD    | I   | Micon command load signal input            | 55         | P85    | -   | Connect to GND                     |
| 24         | MCLK   | Ι   | Micon command clock signal input           | 56         | P84    | 1   | Connect to GND                     |
| 25         | STAT   | 0   | Status signal output                       | 57         | P83    | -   | Connect to GND                     |
| 26         | XRST   | 0   | Reset output                               | 58         | P82    | -   | Connect to GND                     |
| 27         | BLKCK  | Ι   | Feed Kick control output                   | 59         | P81    | -   | Connect to GND                     |
| 28         | P21    | -   | Eanable signal                             | 60         | ESPCHG | -   | Connect to GND                     |
| 29         | P22    | -   | Connect to GND                             | 61         | VREF-  | -   | Connect to GND                     |
| 30         | P23    | -   | Connect to GND                             | 62         | KEY0   | 1   | Connect to GND                     |
| 31         | P24    | -   | Connect to GND                             | 63         | KEY1   | -   | Connect to GND                     |
| 32         | REST   | Ι   | Rest sw input                              | 64         | PA2    | -   | Connect to GND                     |

#### ■ AN4801SB-W (IC603): BTL DRIVER

#### 1. Terminal layout

#### 2. Block diagram




| Pin No. | Symbol | I/O | Function                        | Pin No. | Symbol | I/O | Function                        |
|---------|--------|-----|---------------------------------|---------|--------|-----|---------------------------------|
| 1       | SPIN   | ı   | Spindle servo control input     | 15      | T+     | 0   | Tracking servo signal output(+) |
| 2       | PC2    | ı   | Power control                   | 16      | F-     | 0   | Focus servo signal output(-)    |
| 3       | TRVIN  | ı   | Traverse signal input           | 17      | F+     | 0   | Focus servo signal output(+)    |
| 4       | PC1    | I   | Power control                   | 18      | PVCC2  | -   | Power supply                    |
| 5       | RESET  | ı   | Reset signal input              | 19      | PGND2  | -   | Connect to GND                  |
| 6       | NC     | -   | Non connect                     | 20      | STBY   | I   | Stand-by input                  |
| 7       | NC     | -   | Non connect                     | 21      | NC     | -   | Non connect                     |
| 8       | PGND1  | -   | Connect to GND                  | 22      | NC     | -   | Non connect                     |
| 9       | PVCC1  | -   | Power supply                    | 23      | SVCC   | I   | Reference voltage input         |
| 10      | TRV-   | -   | Traverse drive output(-)        | 24      | VREF   | I   | Voltage reference input         |
| 11      | TRV+   | 0   | Traverse drive output(+)        | 25      | FOIN   | I   | Focus coil driver               |
| 12      | SP+    | 0   | Spindle servo drive output(-)   | 26      | TRIN   | I   | Tracking coil driver input      |
| 13      | SP-    | 0   | Spindle servo drive output(-)   | 27      | FIN1   | -   | GND                             |
| 14      | T-     | 0   | Tracking servo signal output(-) | 28      | FIN2   | -   | GND                             |

#### ■ AN8838SB(IC604) : RF & Servo AMP

#### 1. Terminal layout

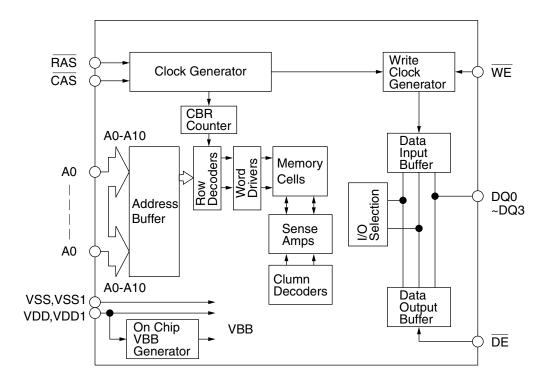
#### 2. Block diagram

| VCC   | 1  | 28 | PDF          |
|-------|----|----|--------------|
| POA   | 2  | 27 | PDE          |
| POC   | 3  | 26 | VREF         |
| POB   | 4  | 25 | TEOUT        |
| POD   | 5  | 24 | TEN          |
| RFFB  | 6  | 23 | TBAL         |
| RF    | 7  | 22 | FBAL         |
| RF IN | 8  | 21 | FEN          |
| LPD   | 9  | 20 | FEOUT        |
| LD    | 10 | 19 | ENV          |
| CSBRT | 11 | 18 | LDON         |
| CEA   | 12 | 17 | OFTR         |
| BDO   | 13 | 16 | <b>PDOWN</b> |
| GND   | 14 | 15 | RFDET        |
|       |    |    |              |



| Pin No. | Symbol | I/O | Descriptions                                                        |
|---------|--------|-----|---------------------------------------------------------------------|
| 1       | VCC    | -   | Power supply                                                        |
| 2       | POA    | I   | Focus signal input A                                                |
| 3       | POC    | I   | Focus signal input C                                                |
| 4       | POB    | I   | Focus signal input B                                                |
| 5       | PO     | I   | Focus signal input D                                                |
| 6       | RFFB   | I   | RFamp input                                                         |
| 7       | RF     | 0   | RFamp output                                                        |
| 8       | RF IN  | I   | RF input                                                            |
| 9       | LPD    | I   | APC amp input terminal                                              |
| 10      | LD     | 0   | APC amp output terminal                                             |
| 11      | CSBRT  |     | OFF Track External terminal                                         |
| 12      | CEA    | I/O | A capacitor is connected to this terminal detect the envelope of RF |
|         |        |     | signal                                                              |
| 13      | BDO    | 0   | BDO output                                                          |
| 14      | GND    | -   | Connect to GND                                                      |
| 15      | RFDET  | I   | RF detect signal input                                              |
| 16      | PDOWN  | I   | Power down input                                                    |
| 17      | OFTR   | 0   | OFF Track output                                                    |
| 18      | LDON   | I   | APC ON/OFF control terminal                                         |
| 19      | ENV    | 0   | Envelope output                                                     |
| 20      | FEOUT  | 0   | Output pin of focus error                                           |
| 21      | FEN    | I   | Focus error amp output                                              |
| 22      | FBAL   | I   | Focus balance control                                               |
| 23      | TBAL   | I   | Tracking balance control                                            |
| 24      | TEN    | 0   | Tracking error output                                               |
| 25      | TEOUT  | 0   | Tracking error signal output                                        |
| 26      | VREF   | 0   | Reference voltage output                                            |
| 27      | PDE    | I   | I-V amp input                                                       |
| 28      | PDF    |     | I-V amp input                                                       |

#### ■ M11L1644SA-50T (IC605) : D RAM


#### 1. Terminal layout

#### VDD 1 ⊒24 VSS1 DQ0 2[ □23 DQ3 □22 DQ2 DQ1 3[ □21 CAS WE 4 RAS 5 □20 DE NC 6 □19 A9 A10 7 □18 A8 □17 A7 A0 8 □16 A6 A1 9[ A2 10 [ □15 A5 A3 11 [ □14 A4 □13 VSS VDD1 12 [

#### 2. Pin Function

| Symbol    | Function              |
|-----------|-----------------------|
| A0-A10    | Address Input         |
| RAS       | Low Address strove    |
| CAS       | Column Address Strove |
| WE        | Write enable Input    |
| DE        | Output Enable Input   |
| DQ0-DQ3   | Data in/out           |
| VCC, VCC1 | Power Supply (+3.3V)  |
| VSS, VSS1 | Power Supply (0V)     |
| NC        | Non Connect           |

#### 3. Block Diagram



#### ■ TA2104AN(IC1) : RadioTuner

1. Terminal layout & Block diagram





VICTOR COMPANY OF JAPAN, LIMITED
AUDIO & COMMUNICATION BUSINESS DIVISION

PERSONAL & MOBILE NETWORK BUSINESS UNIT. 10-1,1Chome,Ohwatari-machi,Maebashi-city,371-8543,Japan

No.20992 200107(S)